The first species of *Lentinula* described from Africa: patterns of genetic divergence and historical biogeography in *Lentinula*

Brian Looney¹*, Bart Buyck², Emile Randrianjohany³, David Hibbett¹

¹Clark University, Worcester, MA; ²Muséum national d’Histoire naturelle, Paris, France; ³Centre National de Recherche sur l’Environnement, Antananarivo, Madagascar

Abstract

The genus *Lentinula* (Agaricales) is a small lineage in Omphalotaceae with seven described species, including the shiitake mushroom (*L. edodes*), which is the most widely cultivated mushroom in the world. Species of *Lentinula* are distributed throughout Australasia, the neotropics, and the Gulf Coast and Carribean regions of the Americas, but none have been described from Africa. Here, we describe the first species of *Lentinula* from Africa, *Lentinula madagaskarensis* sp. nov., from central Madagascar. This report constitutes a 4000-mile, trans-oceanic range extension for *Lentinula*. The new taxon is strikingly similar to *L. edodes*, but a multi-locus phylogenetic analysis places it as sister to the neotropical *L. aciculospora*. A combination of macro- and micromorphological characters clearly distinguish *L. madagaskarensis* from all other species of the genus. We will discuss the implications of this discovery for the geographic origin of *Lentinula*, as well as a particularly high rate of interspecific sequence divergence in the ITS region detected in the group.

L. madagaskarensis sp. nov.

During a survey on edible mushrooms of Madagascar, B. Buyck and V. Hofstetter reported the finding of a species of *Lentinula*. This species was found on both native wood as well as introduced Eucalyptus. The new species closely resembles *L. edodes* but differs in having thick velar material on the cap margin as well as narrower spores and sphaeropedunculate chel icystidia that forms florets. *L. madagaskarensis* is morphologically distinct from its sister species, *L. aciculospora*, with its vinaceous cap color, larger basidiospores, and chelicystidia without lobes. The epithet is derived from the Malagasy term for Madagascar.

Species phylogeny of Lentinula

After confirming placement in *Lentinula*, an ITS phylogeny resolves the new species placement as sister to *L. aciculospora*, an America species restricted to Central America and northern South America.

Placement in Omphalotaceae

The 28S dataset of Omphalotaceae from Oliveira et al. (2019) was used to test whether the African material represents a new species of *Lentinula*, a new genus, or a member of a different genus. Based on these results, this is clearly a new species of *Lentinula*.

High interspecific variation in ITS

New sequences for the African species and an ITS multi-sequence alignment were included in the analyses. A dataset (28S) with 100 species was used to test the new species placement. Initial BLAST results of the ITS sequences of *Lentinula* resulted in ambiguous hits to various members of Omphalotaceae. Genetic distances between species of *Lentinula* outside of the Asian-Australases clade are high.

Future directions

It will be important to include this new species in the ongoing *Lentinula* genome project. We plan to use the Oxford Nanopore MinION system to sequence the 2008 material. With this data we can use phylogenomics to resolve relationships in *Lentinula* and test for a biogeographic origin.

Acknowledgement

BB expresses sincere thanks to the Committee for Research and Exploration of the National Geographic Society for funding part of the fieldwork through grant #7921-05. Colleagues of the CNRS at Antananarivo are acknowledged for excellent field assistance. Jadson J. B. Oliveira kindly provided the starting alignment for the 28S dataset. Research at Clark University was supported by National Science Foundation award DEB-1465688 (ISH, PI).

*Figure 1. Lab and field photographs of *Lentinula* madagaskarensis: Chloicystidia; Basidiospores, and Basidia; G) Chelicystidia. Scale bar for drawings equals 20 μm.*